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ABSTRACT 
 
 
 

This thesis investigates and demonstrates the workability of the time-reversed 

process for radar imaging applications, particularly, for bi-static or multi-static radars. 

One benefit of the time-reversed process is its ability to reduce the calculation to 

determine the targets’ shape. The finite-difference-time-domain (FDTD) method is used 

to demonstrate the time-reversed process. 

Following an overview and description of the principles of the time-reversed 

process, the FDTD method is applied to the wave equation and the time reversed-process 

in 2-D space. The FDTD numerical model is developed and used for producing 

fundamental examples on conducting targets. The examples reveal that the time-reversed 

process can be employed for radar imaging within certain constraints. Finally, 

conclusions regarding the time-reversed-process are presented and recommendations for 

future research are provided. 
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I. INTRODUCTION  
 
 
A.        OVERVIEW 

Bi-static or multi-static radar has been recognized as an effective tool for 

detecting and tracking low observable targets, such as stealth aircraft [Ref.1]. The 

development of these systems emphasized measurement of the target’s precise location in 

range and angle. However, in general, they are not capable of identifying the shape of a 

target. In many situations, this information may be important to make an appropriate 

decision or to distinguish a friendly target from the enemy.  Because of its importance, 

radar imaging has been a topic of intense research for the past several decades, being 

driven by the need to identify friend from foe in future radar systems.  

At present some useful radar techniques are available, such as SAR/ISAR, which 

produce very detailed information of a target. These techniques require, however, a 

relatively long process in obtaining the information. Therefore, more timely processing 

techniques are desired in many situations.       

To obtain information relating target identity to the received radar signature, 

inverse scattering problems have to be solved. Solutions to the forward scattering 

problem, which predict scattering from known objects, are diverse and well known.  

Once the scattered wave is known implicitly or explicitly, determining a target’s shape is 

possible, in theory, by inverting the forward scattered solution process.   Many methods 

for inverse scattering have been investigated. For example, Colton and Kress [Ref.2] 

introduced inverse scattering theory in which Colton, Giebermann and Monk [Ref.3] 

provided numerical examples of obtaining the shape of an obstacle in three dimensions 
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using time-harmonic incident and scattered acoustic waves. These methods were induced 

by solving the frequency- domain Helmholtz equation.  

 Some useful methods for solving scattering problems in the time- domain exist, 

such as time-domain physical optics, time-domain integral equations and finite-difference 

time-domain (FDTD).   These methods can be used, in theory, to determine or estimate 

the shape of a scattering obstacle.   Although there are many publications available on the 

inverse scattering time-domain methods, these deal mainly with an electric or magnetic 

field integral equation [Ref.4]. The integral equation approach requires enormous 

computational resources to determine the shape of a complex target and requires a very 

high signal to noise ratio in the received scattered signatures.    

This thesis investigates a new technique for estimating the location and shape of 

one or more targets by processing scattering signature information captured by sensors on 

the perimeter of a region.    A reversed-time solution within the region is performed using 

the FDTD method.    Such a method has the potential for employment by bi-static or 

multi-static radar systems.     

Fink [Ref.5] introduced the concept of “Time Reversed Acoustic Imaging” 

associated with wave field propagation.   Fink’s colleagues [Ref. 6, 7, 8, 9] have worked 

with this concept. The basic idea of this process is based on an elementary fact of time-

reversal invariance of the wave equation in a lossless medium. Briefly, the process occurs 

when the wave field from an obstacle or a target is propagated and is captured on the 

surrounding surface using a number of transducers. These transducers combine the 

functions of microphone and loudspeaker, emitting a time-reversed replica of the 

received signature from each transducer. These emissions generate a time-reversed field 
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within the enclosed region, which collapses upon the target. In other words, the wave 

field is recorded on the boundary and is reradiated as an appropriate reversed field. The 

reversed field, then, focuses on the original source. This process may be extended to 

electromagnetic waves.  

The “Time Reversed Imaging” technique, which is the subject of study in this 

thesis, uses the “Time Reversed Acoustics” concept. This concept focuses on wave field 

propagation, in particular wavefronts. This implies that the field is not always present at 

the target location, which may reduce computational time. Moreover, focusing on 

wavefronts enables this concept to be used for a wide frequency range and for weak 

scattering cases. In general terms, this concept seems simple and logical, but historically 

it has not been used for electromagnetic waves.  

 

B. THESIS OBJECTIVE 

 This thesis investigates application of the time-reversed process to 

electromagnetic waves and employment for bi-static or multi-static pulsed radar 

applications. The thesis develops needed numerical modeling and simulation using the 

FDTD method, which is an efficient way to represent this process for vector fields.   

In Chapter 2, the general principle of the time reversal process is introduced.   

Chapter 3 focuses on the numerical representation and description of modeling and 

simulation. Chapter 4 presents numerical examples using MATLAB.    Finally, Chapter 5 

summarizes and concludes this study with suggestions for further research.   

   

 

 



4 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5 

II. GENERAL PRINCIPLE OF TIME- REVERSED PROCESS   
 
 
 

This chapter presents an overview of the time-reversed process. Details can be 

found in Reference 8.   

   

A. TIME REVERSAL OF ELECTRIC FIELDS 

Maxwell’s equations induce the wave equation for the electric field in lossless 

homogeneous media.   In free space, this is written as 

( ) ( )
0

t,1
t, 2

2

2
2 =

∂
∂

−∇
t

E
c

E
r

r                                                                                  (1) 

where ∇2  represents the Laplacian operator with respect to the spatial r- coordinates and 

c represents the phase velocity in free space. 

Looking at equation (1), it contains only a second order time–derivative operator. 

It follows, therefore, that if E(r, t) is a solution, then E(r, -t) is also a solution. That is, the 

wave equation is unchanged under a time–reversal transform if there is no absorption 

during propagation in the medium.   This property is the starting point of the time-

reversal principle.    In order for the time–reversal invariance to remain valid, no loss or 

absorption during propagation is assumed. 

The special property of time reversal has been observed by Stokes [Ref. 9] in the 

classical experiment of reflection and transmission of a plane wave between two different 

media. Considering an incident plane wave of amplitude E0i propagating from medium 1 

to medium 2, we can observe the amplitude of the reflected field (E0r) and the transmitted 

field (E0t). Here, introducing r as the amplitude reflection coefficient and t as the 
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amplitude transmission coefficient leads to E0r = r E0i and E0t= t E0i. Following this, a 

solution of the wave equation, E(r, t), results from three plane waves.   Figure 1 indicates 

this situation. 

In the case of no absorption, a wave must be reversible in accordance with the 

reciprocity theorem leading to the principle of reversibility.   Thus, the condition of 

Figure 2 must also be physically possible.   Then, the time- reversed solution, E(r, -t), can 

be described by E0i, E0r and E0t.    Accordingly, when examining the situation in Figure 3, 

there are two incident waves of amplitude: rE0i and tE0i. One wave whose amplitude is 

tE0i is both reflected and transmitted at the interface. Letting r’ and t’ be the amplitude 

reflection and transmission coefficient, respectively, for a wave incident from medium 2 

to medium 1, the reflected portion is tr’E0i and the transmitted portion is tt’E0i. Similarly, 

the incoming wave whose amplitude is rE0i splits into both the amplitude rr E0i and rt E0i. 

Using the superposition principle, it follows that 

 tt’E0i+ rr E0i = E0i                                                                                              (2) 

 tr’E0i+ rt E0i=0                                                                                                   (3) 

Therefore,   

              tt’ = 1 - r2                                                                                                          (4) 

               r’ = -r                                                                                                               (5) 

If the interface between medium 1 and medium 2 is a perfect conductor, t and t’ 

are zero. This results in either r= 1, r’= -1 or r= -1, r’=1.   For simplicity, this thesis 

considers only targets or obstacles whose surfaces have the condition of a perfect 

conductor. Furthermore, it is important to note that the two relationships written above 
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are only valid if the reflected and transmitted plane waves are able to propagate without 

attenuation, which implies that they have a real wave number. The incident field we 

consider in this thesis does not contain any evanescent waves that cannot be time-

reversed. 

       

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1. Reflection and transmission of a plane wave along the interface between 
medium 1 and medium 2 
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Figure 2. Time- reversal of Figure 1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Explanation of time- reversal for reflection and transmission  

 

 

Medium 1 

Medium 2 

E0i rE0i 

tE0i 

Medium 1 

Medium 2 

rrE0i rE0i 

tE0i 

tt’E0i 

tr’E0i 

rtE0i 



9 

B. PRACTICAL CONSIDERATION 

The initial conditions of a target or an obstacle and the boundary conditions 

determine a unique solution, E(r, t) to the wave equation in (1).   In the time–reversed 

operation, the solution E(r, -t) is given by modifying the initial condition and the 

boundary condition.    In practice, however, because every physical phenomenon requires 

causality, E(r, -t) is not a valid solution.   Therefore, we consider E(r, T-t) under the 

limited time interval T, where T is sufficiently advanced in time so that E(r, t) is regarded 

as zero for t > T.      To assume otherwise requires “initial condition” knowledge of the 

fields E(r, t) in the whole three-dimensional volume during the time interval T in order to 

generate the time–reversed solution E(r, T-t).    A more realistic way to generate the 

time–reversed solution is to use the advantage of Huygens’ principle.    Based on this 

principle, the time-reversed operation in the three-dimensional volume requires time-

reversed boundary conditions on an enclosing two-dimensional surface.   Using this 

approach, focusing on a target can be described in the following way. 

During the recording step, the target within the volume surrounded by a finite 

number of receivers generates a field, E(r, t), which produces an expanding wavefront.  

The receivers sample the field at locations on the enclosing surface and have the 

capability to measure the field without disturbing the propagation of the field.   

Therefore, the field is propagated in a free unbounded space. During the time-reversed 

reconstruction, the target behaves as a passive source or is ignored.  Each receiver then 

generates the field, E(r, T-t), that corresponds exactly to the time-reversal of the 

corresponding field measured during the recording step.   A time-reversed field back-

propagates inside the recording surface and is focused on the initial target position. 

Figures 4 and 5 illustrate the recording and reconstruction steps, respectively. 
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Figure 4. Recording step of the time- reversal process with a closed surface 
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Figure 5. Reconstruction step of the time-reversal process with a closed surface 
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III. NUMERICAL MODELING OF TIME –REVERSED PROCESS 
 

This chapter presents an overview of the finite-difference time-domain (FDTD) 

numerical model used for demonstrating the time-reversed process in 2-D space. The 

FDTD method is an appropriate way to represent this process, applying approximations 

for the space and time partial derivatives within the wave equation.  Space and time 

discretizations are selected to ensure the numerical stability of the algorithm.  

For the region defined, the wave equation is solved subject to initial value and 

boundary value conditions according to electromagnetic theory. This is the same 

procedure applied to the FDTD method. Overall, the FDTD is a time-marching procedure 

discretely simulating the continuous fields that solve the wave equation. The solution is 

subject to the initial and boundary conditions. At each time step, the system of equations 

is used to update the field components and is fully explicit so that setting up or solving 

linear equations is not required. Time stepping is continued, allowing one to observe 

electromagnetic wave propagation and scattering. Details on the FDTD can be found in 

many publications. Some of these are listed in References 10 and 11. 

The next section presents numerical modeling of the wave equation followed by 

the forward and reverse processes, and is based on Reference 12. For simplicity, a 3-D 

(2-dimentional plus time) rectangular region with ( , , )zE x y t  (TMz waves) is assumed 

throughout this thesis. 
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A. THE FDTD SOLUTION OF THE WAVE EQUATION  

This section briefly provides details on how the wave equation can be solved with 

the FDTD method. 

Consider solving the wave equation in a rectangular region, 0= x = a, 0= y = b and 

t = 0, as depicted in Figure 6, 

0
),,(1

),,(
2

2

2
2 =

∂
∂

−∇
t

tyxE
c

tyxE z
z                                                                      (6) 

with initial conditions 

),()0,,( yxfyxEz =                                                                                             (7) 

( ) ),(0,, yxgyx
t

E z =
∂

∂
                                                                                          (8) 

and boundary conditions. 

),(),,(         ),,(),0,(
),(),,(        ),,(),,0(

43

21

txetbxEtxetxE
tyetyaEtyetyE

zz

zz

==
==

                                                      (9) 

Here, the assumption is that a = Mh and b= Nh, where ?x=?y=h is an equal grid 

spacing in x and y with M and N as arbitrary integers. Letting ?t be the time step and T 

be the desired time interval, the grid positions are given by 

tpthnyhmx pnm ∆−=−=−= )1(and)1(,)1(                     (10) 

where 1, , 1, and 1,m M n N p T= = = . 

We define ),,( pnmEz  to be the discrete space-time sample of ),,( pnmz tyxE . 

Applying the finite difference approximations in space and time at the point  
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(m ,n, p) to each term of the wave equation gives,  

)},,(4),1,(

),1,(),,1(),,1({
1

),,(
2

2

pnmEpnmE

pnmEpnmEpnmE
h

tyxE

zz

zzzpnmz

−−+

++−++≈∇
         (11) 

)},,(2

)1,,()1,,({
)(

1),,(1
222

2

2

pnmE

pnmEpnmE
tct

tyxE

c

z

zz
pnmz

−

−++
∆

≈
∂

∂
                      (12) 

Substituting (11) and (12) into (6) and solving for Ez at tp+1, yields:  

{ }

)13(             )1,,(),,(212

),1,(),1,(),,1(),,1()1,,(

2

2

−−


















 ∆

−+

−+++−++





 ∆

≈+

pnmEpnmE
h

tc

pnmEpnmEpnmEpnmE
h

tc
pnmE

zz

Zzzzz

 

 Equation (14) implies that we can predict Ez at the point (xm, yn, tp+1) from six previous 

points in the grid as shown in Figure 7. 

By introducing 2-D spatial arrays Ep =Ez(: , : , p), where Ep is an MxN array at 

time step, p, we can rearrange equation (14) to the form, 

{ } 1

22

1 212 −+ −


















 ∆

−+⋅+⋅





 ∆

= ppppp EE
h

tc
BEEA

h
tc

E                                (14) 
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where 

0100
10
0110

01
0010

L
OOM
O

MOO
L

=A     and 

0100
10
0110

01
0010

L
OOM
O

MOO
L

=B  

are respectively MxM and NxN unit off-diagonal arrays. Equation (14) is the time-

marching equation for non-boundary terms.   To insure the stability of solutions, the next 

condition must satisfy the 2-D Courant condition: 

              
2

1
≤

∆
h

tc
                                                                                             (15) 

At p = 1, the initial condition (7) is used and the value at p = 0 is established by 

the initial condition (8), which is: 

),(
)0,,( 01

nm
z yxg

t
EE

t
yxE

=
∆
−

≈
∂

∂
              (16) 

Using E1 and E0, the non-boundary value of E2 is given by equation (14). Then the 

boundary conditions are added to E2 and the process is repeated to find E3 from E2 and E1 

until the desired time is reached. 
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Figure  6. Geometry of the space-time rectangular region 
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 Figure  7.  FDTD space-time node diagram 
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B.         MODEL DESCRIPTION 

During the forward or recording step, equation (14) is used to find the forward 

time solutions of the wave equation using the initial conditions and the boundary 

conditions.    Equation (14) is also used during the reverse or reconstruction step to find 

the reverse time solutions of the wave equation by defining the solutions found at the 

desired time step T as the initial and the boundary conditions. 

Since it is not possible to consider an infinite region to propagate the fields, a 

limited region is required to terminate the simulation.   Rather than utilizing absorbing 

type boundary conditions which yield only approximate cancellation of reflections, it was 

decided to avoid all reflections by employing a distant terminating boundary whose 

reflection, although large, does not arrive back at the sensor boundary until t > T.  

1. Model 

Denoting Mp and Np as the number of receivers on the recording surface of the x- 

and y-segment, and Me and Ne as the spacing between each of the x- and y-segment 

receivers, respectively, the number of grid nodes on the sensor surface segments becomes 

Ms=(Mp-1)×Me+1  (x-segment) 

Ns=(Np-1)×Ne+1   (y-segment)                                                                            (17) 

The number of nodes on the distant boundary will be set in this work to be 

            M=2×Ms    (x-segment) 

            N=2×Ns     (y-segment)                                                                                       (18) 

The sensor surface is located at the approximate center of the distant boundary by 

defining its edges as follows: 
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  m1= (M-Ms)/2+1 (Left edge),  m2= m1+Ms-1   (Right edge)   (x-segment)     

            n1= (N-Ns)/2+1 (Lower edge),     n2= n2+Ns-1   (Upper edge)  (y-segment)    (19)  

The geometry is described in Figure 8. 

For simplicity, the spacing of each node (h) is set to 1 m throughout this thesis. As 

a result, the 2-D stability condition (15) is rewritten as 

(20)                                                                                                       2
1

≥
∆

=
tc

q

 

Usually, in two or three- dimensional problems the stability condition q is chosen 

to be twice that needed.   Therefore, this model also chooses q to be 2. This ensures two 

samples between two adjacent points at each time step. 

2. Initial And Boundary Conditions 

Since this thesis considers only the source-free region, no fields exist within the 

recording surface and the distant boundary at the initial time. Therefore, the initial 

conditions within the distant boundary are given by: 

0)1,,( =nmEz         

0
)1,,(

=
∂

∂
t

nmE z                                                                                                (21)  

where m = 1, M and n = 1, N. 

Assuming the scattered field is to be reflected at the distant boundary, the 

boundary conditions at the distant boundary become: 

0),,(,0),1,(
0),,(,0),,1(

==
==

pNmEpmE
pnMEpnE

zz

zz                                                              (22) 
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where m =1, M, n =1, N and p =1, T. These boundary conditions are maintained 

throughout the forward time step. 

    The field data at the recording surface must be stored at each time step. Letting 

EzBC1, EzBC2, EzBC3, and EzBC4 denote the arrays storing the field data of each side of 

the recording surface during the forward time step:  

( ) ( )
( ) ( ) ),,2(4),,,1(3

),2,(2),,1,(1
pnmEpEzBCpnmEpEzBC
pnmEpEzBCpnmEpEzBC

rzrz

rzrz

==
==

                                  (23) 

where mr = m1, m1+Me, m1+2Me,……m2, nr = n1, n1+Ne, n1+2Ne,……n2, and p=1,T. 

The field data stored at the recording surface at any forward time step, p = P and p 

= P-1, where P is less than T, can be defined as the initial conditions for the time-reversed 

process: 

)(4)1,,2(),(3)1,,1(

)(2)1,2,(),(1)1,1,(

PEzBCnmEPEzBCnmE

PEzBCnmEPEzBCnmE

r
r
zr

r
z

r
r
zr

r
z

==

==
                                     (24)          

and                                                                                                               
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)1(2)2,2,(),1(1)2,1,(

−=−=

−=−=

PEzBCnmEPEzBCnmE

PEzBCnmEPEzBCnmE

r
r
zr

r
z

r
r
zr

r
z                          (25) 

where r
zE  is the time-reversed field and P ≤ T. Based on conditions (24) and (25), 

equation (14) is used to update the time-reversed field inside the recording surface until 

the reversed time step, P. 

If Me = Ne = 1, the time-reversed field is easily updated because ?h is assumed to 

be 1. If Me ? 1 or Ne ? 1, however, the field data requires interpolation at grid points 
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between each two adjacent transducers to maintain the continuity of the field. To satisfy 

this condition, we use a ‘cubic spline’ interpolation algorithm in MATLAB.  

3. Incident Field 

The incident field used here is represented by a Gaussian impulse plane wave 

propagating in the –x direction, centered at 0x x=  at t = 0, with the form,  

2 2
0( ) / 2( , ) ct x xf x t e σ− + −=                                                                              (26) 

where σ is the standard deviation of spatial width of the pulse. Viewing the impulsive 

waveform at 0x x=  gives 

2 2

0( , ) A tf x t e−=                                                                                         (27) 

where 
2

2
22

c
A

σ
= . Its frequency spectrum is given by: 

2 2 2/
0( , ) f AF x f e π−= .                                                                                 (28) 

The 3dB bandwidth of this baseband pulse is given by solution of 

0 3
1

( , )
2

dBF x f =                                                                                      (29) 

which yields, 

3

ln2
ln2

2 2dB

A c
f

π πσ
= =                                                                    (30) 

Note the reciprocal relationship between the spatial standard deviation and the 3dB 

bandwidth.    
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4. Field Representation 

A scattered field results when an incident field interacts with a target.  Interactions 

include polarization currents excited within dielectric materials and surface currents 

induced near to the surface of metallic conductors.   Assuming a target composed of 

perfectly conducting metallic surfaces, the total tangential E-field is forced to zero at the 

surface. Since the total field is given by sinctotal EEE += , where Etotal, Einc, and Es 

represent the total field, the incident field and the scattered field, respectively, the 

tangential scattered field is equal to the negative of the incident tangential field at the 

metallic surface of the target.      

To properly execute the FDTD time-reversed field simulation of the scattered 

field when the field focuses on a metallic target we need to provide the negative incident 

field boundary condition at all surface target nodes. However, we usually do not know 

where the target is or when the incident field reaches the target. Unless this field 

boundary condition is applied at these target nodes during the time-reversed process, field 

interactions occur between adjacent nodes and the time-reversed scattered field solution 

does not become extinguished for times prior to the initial plane wave impact.    

Suppose that a point-like target exists inside the recording surface and the total 

scattered field on the recording surface is already known. The total scattered field inside 

the recording surface would then consist of the scattered field generated by the time-

reversed boundary conditions on the recording surface and from the negative incident 

field boundary conditions caused by nature on the target, or  

),(),(),( trEtrEtrE T
S
ZB

S
Ztotal

S
Z −+−=−

rrr
                                                    (31) 
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where total
S
ZE  is the total scattered field inside the surface, B

S
ZE   is the scattered field 

generated by the recording boundary and T
S
ZE   is the scattered field interaction with the 

target. We can solve for B
S
ZE  by using only the boundary data on the recording surface 

without knowing the location of the target. total
S
ZE  is able to be set to zero before the time 

,t0, when the incident field reaches the target. As a result, we can predict T
S
ZE  as: 

 ),(),( trEtrE TB
S
ZTT

S
Z −−=−

rr
                                                                                 (32)      

where Tr
r

 is the location of the target. Once the node location is identified, we can 

simulate the target node interaction and properly terminate the time- reversed process. 

5. Conservation Of Energy 

The above sequential node identification process may be extended in theory to 

multiple target nodes. However, a different concept is applied in this thesis to yield a cost 

function for solution optimization. This concept is that of conservation of energy.  The 

total scattered field energy accumulated within the recording surface during the time-

reversed process will become constant at all times prior to the initial impact of the 

incident field on the target. This same result will occur in the time-reversed FDTD 

simulation if the reversed field collapses while the correct target node locations are given 

negative incident field boundary conditions. If the accumulated total energy in the time-

reversed solution continues increasing before this initial impact time, then one or more 

assumed target nodes are wrong. 

The energy metric within the sensor surface at an arbitrary time step, t1, is defined 

by: 
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where Ez(m ,n ,t1) is the time-reversed field at each node within the recording surface at 

the time step, t1. The accumulated total energy to the time step, T, is defined by 

            ∑ ∑ ∑
= = =

=
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t

m
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nn
z tnmEtEnergy
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2

1

2)],,([)(                                                        (34) 

If the accumulated energy in (34) becomes constant, this implies that the time-reversed 

field is collapsing onto the exact target node locations.  

An example is presented in the next chapter to illustrate this concept. In the 

example, we enforce the negative incident field on the exact target nodes during the 

reversed time step and obtain the accumulated total energy.  Next, the assumed target 

nodes are slightly perturbed from the original location to demonstrate the increase of 

accumulated total energy. 
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 Figure  8.  Simulation model diagram 
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IV. EXAMPLES OF TIME-REVERSED IMAGING 
 
 

This chapter presents fundamental examples of the time-reversed imaging 

process.   The first example illustrates the basic time-reversed process, while the other 

examples consider the process working under practical consideration, such as pulsed 

radar applications.      However, this chapter does not consider some aspects of the real 

environment, such as noise, actual 3-D shapes and materials of targets and any kind of 

information loss by the media.      In all examples, the dimensions of the FDTD grid and 

number of time steps are set as follows: MS = NS= 101, T = 300.    This selection sets the 

recording surface as a 100m × 100m square grid and the distant boundary as a 200m × 

200m square grid with 201 by 201 points. 

All programs used for calculations shown in this chapter are presented in the 

Appendix.   

 

A. TARGETS NODES WITH INITIAL CONDITIONS ONLY  

This first example considers two aircraft-like targets present inside the recording 

surface.  The targets are represented by specific grid points that are excited by initial 

conditions, EZ (x, y, t=0) =1, but with no subsequent boundary conditions.   Grid points 

surrounding the target nodes are also endowed with initial conditions, but which rapidly 

decrease with distance, per a Gaussian distribution.  No incident field is considered and 

there are no boundary field interactions for the target nodes, such as with conducting 

targets.  This example demonstrates how the reversed field converges onto the target 

nodes for the fundamental initial value problem. 
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1. Forward Time Step Solutions 

The forward time simulation is described first to help understand the reversed 

time simulation described later.     Figure 9 shows the initial condition of the simulation.  

For convenience, the recording surface is presented as a dashed line. Every 60th time step 

is presented in Figure 10.      Figure 11 represents the final time step.   Time-reversed 

recorded field values on the inner grid boundary are used to drive the time-reversed 

solution while null initial conditions are assumed within the inner grid.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 9. Initial condition of the forward time step for two aircraft-like targets 
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Figure 10.  Forward time step for two aircraft-like targets at T = 61, T = 121, T = 181 and 
T = 241 
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Figure 11.  Final time step T = 300 for two aircraft-like targets 
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2. Reversed Time Step Solution with Me = Ne = 1 

This subsection presents the reversed time step simulation in the case of Me = Ne = 

1. In this case, each node acts as a transducer; thus, the number of transducers is Mp = Np 

= 101. Selecting Me = Ne = 1 provides the most accurate field representation although 

some errors occur due to the computational truncation. Therefore, the final reversed time 

step condition does not indicate the exact initial condition of the forward time step. As 

seen in Figure 11, the field reflected from the outer boundary has crossed the inner 

recording surface sometime before the T=300 time step.   This reflection must not be 

used in the reverse-time process.   Thus, the reverse-time processing will begin at T=250. 

Figure 12 shows the initial condition of the reversed time step with T = 250. Every 25th 

reversed time step is displayed in Figure 13 and Figure 14, with T = 25 and T = 0 shown 

in Figure 15. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

Figure 12.  Initial condition of the reversed time step for two aircraft-like targets with 
Me= Ne= 1 case 
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Figure 13. Reversed time step for two aircraft-like targets with Me= Ne= 1 at T= 225, T= 
200, T= 175 and T= 150 
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Figure 14.  Reversed time step for two aircraft-like targets with Me = Ne = 1 at T= 125, 
T= 100, T= 75 and T= 50 
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Figure 15.  Reversed time step for two aircraft-like targets with Me = Ne= 1 at T= 25 and 
T= 0 
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3. Reversed Time Step Solution with Me = Ne = 5 

This subsection presents the case of Me = Ne = 5, which corresponds to Mp = Np= 

21. This selection means that every 5th point data on the recording surface is used to 

calculate the reversed field. Figure 16 shows the initial condition of the reversed time 

step at T = 250. The red circles in Figure 16 represent the transducers. Figure 17 and 18 

display every 25th time step, while Figure 19 shows the final condition of the reversed 

time step at T=0. This Me = Ne= 5 case provides less accuracy than the case of Me = Ne =1 

does, but it still gives useful targets information.            

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 16.  Initial condition of the reversed time step for two aircraft-like targets with Me 
= Ne = 5  
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Figure 17.   Reversed time step for two aircraft-like targets with Me = Ne = 5 at T= 225, 
T= 200, T= 175 and T= 150 
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Figure 18. Reversed time step for two aircraft-like targets with Me = Ne = 5 at T= 125, T= 
100, T= 75 and T= 50 
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Figure 19.  Reversed time step for two aircraft-like targets with Me = Ne = 5 at T= 25 and 
T= 0 
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4. Reversed Time Step Solution With Me = Ne= 10 

In this final section, the case of Me = Ne= 10 case is simulated. In this situation, 

the corresponding number of the transducers is Mp =Np =11 indicating that every 10th 

point on the recording surface is used. Figure 20 shows the initial condition of the 

reversed time step at T = 250. Figure 21 and 22 display every 25th time step. Figure 23 

shows the final step of the reversed time step, which makes the targets’ shape difficult to 

identify. In this case, the images of the targets are blurred. 

 

 

 

 

 

 

 

 

Figure 20.  Initial condition of the reversed time step for two aircraft-like targets with 

Me= Ne= 10 
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Figure 21.  Reversed time step for two aircraft-like targets with Me = Ne = 10 at T= 125, 
T= 100, T= 75 and T= 50 
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Figure 22.  Reversed time step for two aircraft-like targets with Me = Ne= 10 at T= 125, 
T= 100,T= 75 and T= 50 
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Figure 23.  Reversed time step for two aircraft-like targets with Me = Ne = 10 at T= 25 
and T= 0 
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B. TWO POINT-LIKE SCATTERING TARGETS  

In the previous example of two aircraft-like targets an outbound field is generated 

due only to initial conditions without an incident field.    In this section we consider an 

impulse radar example with scattering of a Gaussian plane wave by two point-like 

metallic targets. The Gaussian plane wave employed in this model has a standard 

deviation, s =1m, which corresponds to a 3dB effective bandwidth, BW3dB ˜  125 MHz.   

In this example, two point-like targets are used to process the reversed time operation. 

Again, the size of the recording surface is Ms = Ns = 101, which is a 100m × 100m square 

grid for the recording surface and a 200m × 200m square grid for the distant boundary. 

The forward time step solutions are presented in the next subsection followed by the 

reversed time step solutions.  

1. Forward Time Step Solutions For Two Point-Like Targets 

This subsection presents the forward time step solution generated by an impulsive 

plane wave incident field.   Boundary data at the recording surface is recorded at each 

time step.   Two point-like perfect conductor targets forcing the total E-field to zero exist 

at the approximate center of the grid.  The incident field starts marching from x =120.  

For convenience, the targets are represented by two black dots in all figures and the 

recording surface is displayed as dashed lines.    Figure 24 shows the initial condition of 

the forward time step solution for two point-like targets with an incident field. Figure25 

displays the results at T= 51,T= 101,T= 151 and T= 201. Finally, the result of T= 251 and 

the final condition at T= 300 are presented on Figure 26. 
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Figure 24.  Initial condition of the forward time step solution for two point-like targets 
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Figure 25.  Forward time step for two point-like targets at T= 51, T= 101, T= 151 and T= 
201 
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Figure 26. Forward time step for two point-like targets at T= 251 and T= 300 
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2. Reversed Time Step Solutions For The Two Point-Like Targets 

This subsection provides the results of the reversed time step simulation. To 

simulate the exact time-reversed solution we must enforce the PEC boundary condition of 

zero total E-field at each target node.   Our goal is to recover the targets’ shape, which is 

assumed to be unknown, so determining the correct nodes to enforce the  PEC boundary 

condition will be akin to solving the imaging problem.   A correct selection of the target 

nodes will make the reversed scattered field collapse onto the targets and become 

completely extinguished at all times prior to the initial impact of the incident plane wave.     

As seen in the forward time step results, the time step, T = 200, is a good choice 

to begin the reversed-time simulation. In this example the spacing of each transducer is 

assumed to be 1: Me = Ne = 1.    Only the scattered field is displayed in this example.  For 

convenience a red dash line is used to represent the location of the incident field peak at 

each time step. The two point-like targets, represented by two black dots, are located at 

Target 1: (x, y) = (96,101) and Target 2: (x, y) = (106,101).   During the simulation, the 

scattered field is forced to be the negative incident field at the target nodes.   Because the 

simulation uses the data as exactly recorded on the recording surface during the 

corresponding forward time step, the scattered field collapses on the targets.  Figure 27 

shows the initial condition of the reversed time step at T = 200.  Figure 28 and 29 display 

every 25th time step. Figure 30 indicates the accumulated total energy inside the 

recording surface, where the x-axis corresponds to the reversed time step, T = 200 - t with 

t being the forward time step. The accumulated total energy inside the recording surface 

remains constant after the scattered field collapses onto the targets.     
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Figure 27.  Initial condition of the reversed time step for the exact two point-like targets 
at T = 200 
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Figure 28.  Reversed time step for the exact two point-like targets at T = 175, T = 150,T 
= 125 and T = 100 
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Figure 29.  Reversed time step for the exact two point-like targets at T = 75, T = 50,T = 
25 and T = 1 
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Figure 30.  Accumulated total energy inside the recording surface 
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3. Reversed Time Step Solutions For Perturbed Two Point-like Targets 

This subsection provides the reversed time solutions for PEC boundary conditions 

enforced at locations slightly in error from the exact nodal locations of the two point-like 

targets.  

The negative incident field is enforced at nodes represented by red dots while the 

exact target node locations are again indicated by black dots.    Since the data used for the 

reversed time step is based on the forward time step solutions in which the targets are 

located at the correct nodes, the time-reversed scattered field does not become 

extinguished, but diverges after the reversed field reaches the new targets. Furthermore, 

the accumulated total energy inside the recording surface keeps increasing although the 

incident field initially does not reach the targets in the forward time step. To confirm the 

concept of the accumulated total energy, three cases are examined. In the first case, 

Target 1 is perturbed, but Target 2 is not perturbed. In the second case, Target 1 stays at 

the original coordinate, while Target 2 is perturbed. In the last case, both targets are 

perturbed.  

a. Case 1:  Target 1 Is Perturbed, Target 2 Is Not 

In this case, Target 1 is perturbed to (x, y) = (90,101), but Target 2 is 

stationed at the correct location, (x, y) = (106, 101). The initial condition at T = 200 is 

shown in Figure 31. Figure 32 displays the results of every 40th time step. Figure 33 

shows the final condition at T = 1. The accumulated total energy inside the recording 

surface is shown in Figure 34. This case causes the accumulated total energy to increase 

after the reversed field reaches the new targets. 
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b. Case 2: Target 1 Is Not Perturbed, Target 2 Is Perturbed 

In this case, Target 1 is located at the correct coordinate, (x, y) = (96, 101), 

but Target 2 is perturbed to (x, y) = (110,101). The initial condition at T=200 is shown in 

Figure 35. Figure 36 displays every 40th time step and Figure 37 shows the final 

condition at T=1. Figure 38 shows the accumulated total energy.  

c. Case 3: Both Targets Are Perturbed 

Target 1 is perturbed to (x, y) = (90,101) and Target 2 is perturbed to (x, 

y)=(110, 101).  Figure 39 shows the initial condition at T = 200. Figure 40 displays every 

40th time step and Figure 41 shows the final condition at T = 1. The accumulated total 

energy is plotted in Figure 42. 
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Figure 31.  Initial condition of the reversed time step for Case 1 
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Figure 32.  Reversed time step solutions for Case 1 at T = 160, T = 120, T = 80 and T = 
40 
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Figure 33. The final condition of the reversed time step for Case 1 
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Figure 34.  Accumulated total energy inside the recording surface for Case 1 
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Figure 35.  Initial condition of the reversed time step for Case 2 
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Figure 36.  Reversed time step solutions for Case 2 at T = 160, T = 120, T = 80 and T = 
40 
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Figure 37. The final condition of the reversed time step for Case 2 
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Figure 38.  Accumulated total energy inside the recording surface for Case 2 
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Figure 39.  Initial condition of the reversed time step for Case 3 
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Figure 40.  Reversed time step solutions for Case 3 at T = 160, T = 120, T = 80 and T = 
40 
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Figure 41. The final condition of the reversed time step for Case 3 

200 - 
■Logl0{|Ef*(x,y,l=1)|} 

... ■ 
160  ' *  \  1 
140 * 

120 

Ö 
7100 

SO 

60 

- 
■«■ 

•0 

■0 

■ 
* 

j. 
40 J 
20 

 1 1 ■          '          '  I '                 ■ 1 L 1 
20 40        60 100      120      140      160      160      200 

x-axis 



65 

 

 

 

 

 
 

Figure 42.  Accumulated total energy inside the recording surface for Case 3 
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C. SUMMARY 

This chapter presented the fundamental examples of the time-reversed process for 

electromagnetic waves by using the FDTD method.    The first example demonstrated the 

time-reversed process when the target nodes radiate due only to enforced initial 

conditions without an incident field.  Essentially perfect reconstruction of the two 

aircraft-like target images is obtained when all nodes on the recording surface are used to 

drive the time-reversed solution. The effect of thinned spacing between the transducers 

was then examined.   This example, however, is not related to the radar scattering case.   

 The next example, which considered an incident Gaussian impulse plane wave, 

showed that the time-reversed scattered field collapses onto the point-like targets, with 

complete extinction only if the PEC boundary condition is enforced on the target nodes 

during the reversed time step.  A wrong selection for any target node location yields a 

reversed-time scattered field that initially collapses but then expands outward.   Incorrect 

target node selections provide scattered field energy at times earlier than the initial 

impact of the incident field.   The accumulated energy in the scattered field continues to 

increase for any wrong target node selection as shown in the three cases examined.   It 

thus appears that accumulated energy in the reversed-time scattering solution can be 

employed as a “cost function” in an optimization routine designed to find the correct 

target nodes. 
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V. SUMMARY AND CONCLUSIONS 
 
A. SUMMARY 

This thesis presents an initial attempt to demonstrate target imaging by using a 

numerical time-reversed process for the radar imaging applications, in particular, for bi-

static or multi-static radars.  

Demonstration of the time-reversed process is done by the FDTD method. The 

first example shows that the time-reversed process can image multiple targets when the 

only driving function for the field is initial conditions at the target nodes.   This, however, 

is not the radar scattering case.  

The radar scattering case was examined next, albeit for a simple example of two 

point targets illuminated by an incident Gaussian pulse plane wave.   A perfect time-

reversed simulation provides a scattered field that collapses onto the target nodes and 

becomes extinguished for all times earlier than the initial plane wave impact.   Such a 

solution requires enforcement of metallic boundary conditions (scattered field equals 

negative of the incident field) at each target node.    This, of course, requires a priori 

knowledge of the target location, orientation and geometry – the very knowledge being 

sought in the time-reversed process.      All is not lost however, by what appears to be a 

chicken and egg dilemma.     Wrong selections of even one target node for enforcing the 

metallic boundary condition yields time-reversed scattering solutions which first collapse 

then radiate outward from the target region rather than being extinguished.   The 

accumulated energy in the solution can thus be used as a cost function for optimization of 

the scattering nodes, with the minimum cost solution corresponding to the correct 

locations.  
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B. CONCLUSIONS AND RECOMMENDATIONS 

The function of a radar imaging system is to gain early identification of non-

cooperative targets.     The objective of this thesis was to initially investigate the potential 

utility of the time-reversed numerical process for employment in multi-static radar 

imaging applications.     Using an initial condition solution as the first case to investigate, 

it was found that superb imaging is possible for multiple targets when all boundary 

nodes, without thinning, are used to drive the time-reversed solution.    The radar 

scattering case, however, is a different animal that will require solution of an 

optimization problem where the target nodes are the parameters to be optimized 

(correctly placed) and the cost function is the accumulated scattered field energy in the 

time-reversed numerical solution. 

Future work on this subject should include investigation of optimization 

algorithms for solution of the correct target nodes.   The genetic algorithm may be the 

best bet for this task since it is robust in exploring a wide range of local cost minima in 

solving for the best global solution within the parameter space.   In addition, a three-

spatial dimension model supporting volumetric regions should be developed.  To 

represent a realistic environment, this model should include provision for uneven spacing 

of the transducers with 3-D targets.    The model should be evaluated relative to required 

operating frequencies, signal-to-noise ratio and the number and material properties of 

realistic targets.  
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APPENDIX.  PROGRAM LISTINGS 
 

A. PROGRAM LISTINGS 

These programs are used to demonstrate the forward scattering and the time-

reversed process in MATLAB.  The program used for the first example allows inputs for 

the number of transducers, the spacing between the transducers, the stability condition, 

time step, the initial condition of the region and the dynamic range for the plot. The 

program used for the second example allows inputs for the number of transducers, time 

step, the initial position of the incident field and the standard deviation of the incident 

field.     Target functions are also listed. 

These programs are written by Prof. M. A. Morgan and modified by LT. Inaba. 

1. Program RTWE_2D5  For The First Example 

 
Mp=input('Enter number of field sensors on each x-segment of the sub-grid boundary: '); 
Me=input('Enter node spacing between each x-segment subgrid boundary sensor: '); 
Np=input('Enter number of field sensors on each y-segment of the sub-grid boundary: '); 
Ne=input('Enter node spacing between each y-segment subgrid boundary sensor: '); 
 
Ms=(Mp-1)*Me + 1; Ns=(Np-1)*Ne + 1; 
disp(['Subgrid: Ms=',int2str(Ms),'; Ns=',int2str(Ns)]); 
 
% Default Mesh 
M=2*Ms; N=2*Ns; 
 
m1=fix((M-Ms)/2)+1; m2=m1+Ms-1; 
n1=fix((N-Ns)/2)+1; n2=n1+Ns-1; 
x=1:M; y=1:N; Y=y'*ones(1,M); X=ones(N,1)*x;  
xs=m1:m2; ys=n1:n2; Ys=ys'*ones(1,Ms); Xs=ones(Ns,1)*xs; 
disp(['Grid: M=',int2str(M),' m1=',int2str(m1),' m2=',int2str(m2),... 
      '; N=',int2str(N),' n1=',int2str(n1),' n2=',int2str(n2)]); 
xe=(m1:Me:m2)'; ye=(n1:Ne:n2)';    % sub-grid sensor x and y node numbers 
 
disp('Note q >= sqrt(2) Courant requirement for convergence ');  
q=input('Enter Integer Value for q=dh/(c*dt) (1, 2, etc): '); 
 
Nmin=min(1.5*M-m2,1.5*N-n2); Pmax=fix(q*Nmin); 
 
P=input(['Enter number of time-steps ( < ',int2str(Pmax),') : ']); 
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name1=input('Enter Forward Soln Files "Name" for  Name_nn.jpg ? (Enter Key to Skip):  
if ~isempty(name1),  
   dp1=input('Enter Time Step Increment Between Stored Frames: '); 
   pj1=1:dp1:P; 
   nj=1; njmx=length(pj1); 
end 
 
Q1=1/(q*q); Q2=(2-4*Q1);  
 
Ez=zeros(N,M,P); % Reserving 3D array  
EzIC=zeros(N,M);  
EzBC1=zeros(Ms,P); EzBC2=zeros(Ns,P); EzBC3=EzBC1; EzBC4=EzBC2;  
% Subgrid BC's 
 
% Constructing Forward-Time Evolution Arrays 
d=ones(1,max(M,N));  
A=diag(d(1:N-1),1)+diag(d(1:N-1),-1); 
B=diag(d(1:M-1),1)+diag(d(1:M-1),-1); 
 
% Define Basic Aircraft Shaped Grid Locations Centered at y=x=0 
[ny,mx]=Air2(N,M);  
Ntgt=length(ny); 
 
% Defining IC Node Centers 
for nic=1:Ntgt 
   EzIC(ny(nic),mx(nic))=1; 
end 
 
% Define Unit Peak Gaussian Shaped Initial Condition 
s=input('Enter IC Std Dev in Grid Spaces (0 to use point ICs): '); 
if ~isempty(s),  
   if s > 0,  
   [ny mx]=find(EzIC==1);               % Array locations for IC nodes 
   Nic=length(ny); 
   for n=1:Nic 
      Xc=X-x(mx(n)); Yc=Y-y(ny(n)); 
      R2=(1/(2*s*s))*(Xc.*Xc+Yc.*Yc); 
      Ez(:,:,1)=Ez(:,:,1) + exp(-R2);   % Gaussian spread about each IC node 
   end 
   else, 
   Ez(:,:,1)=EzIC;                      % Using unit node IC's for s <= 0 
   end  
end 
if isempty(s), Ez(:,:,1)=EzIC; end 
 
% Initial Subgrid BC's 
if Me == 1,  
   EzBC1(:,1)=Ez(n1,xs,1).'; EzBC3(:,1)=Ez(n2,xs,1).'; 
else, 
   EzBC1(:,1)=spline(xe,Ez(n1,xe,1).',xs');  
   EzBC3(:,1)=spline(xe,Ez(n2,xe,1).',xs'); 
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end 
if Ne == 1, 
   EzBC2(:,1)=Ez(ys,m2,1); EzBC4(:,1)=Ez(ys,m1,1); 
else, 
   EzBC2(:,1)=spline(ye,Ez(ye,m2,1),ys');  
   EzBC4(:,1)=spline(ye,Ez(ye,m1,1),ys'); 
end 
 
% Assuming dEz/dt=G=0 at p=1 to take initial step to p=2 (see 5/10/00 note)  
Ez(:,:,2)=0.5*(Q1*(A*Ez(:,:,1) + Ez(:,:,1)*B) + Q2*Ez(:,:,1)); 
% p=2 Subgrid BC's 
if Me == 1,  
   EzBC1(:,2)=Ez(n1,xs,2).'; EzBC3(:,2)=Ez(n2,xs,2).'; 
else, 
   EzBC1(:,2)=spline(xe,Ez(n1,xe,2).',xs');  
   EzBC3(:,2)=spline(xe,Ez(n2,xe,2).',xs'); 
end 
if Ne == 1, 
   EzBC2(:,2)=Ez(ys,m2,2); EzBC4(:,2)=Ez(ys,m1,2); 
else, 
   EzBC2(:,2)=spline(ye,Ez(ye,m2,2),ys');  
   EzBC4(:,2)=spline(ye,Ez(ye,m1,2),ys'); 
end 
 
for p=3:P;           % Equation of Evolution 
Ez(:,:,p)=Q1*(A*Ez(:,:,p-1)+Ez(:,:,p-1)*B)+Q2*(Ez(:,:,p-1)-Ez(:,:,p-2)); 
% Explicitely Enforce Ez=0 BC's on Grid Boundary For Update 
Ez(1,:,p)=zeros(1,M); Ez(N,:,p)=zeros(1,M); 
Ez(:,1,p)=zeros(N,1); Ez(:,M,p)=zeros(N,1); 
Ezmx(p)=max(max(abs(Ez(:,:,p)))); 
% Subgrid BC Update 
if Me == 1,  
   EzBC1(:,p)=Ez(n1,xs,p).'; EzBC3(:,p)=Ez(n2,xs,p).'; 
else, 
   EzBC1(:,p)=spline(xe,Ez(n1,xe,p).',xs');  
   EzBC3(:,p)=spline(xe,Ez(n2,xe,p).',xs'); 
end 
if Ne == 1, 
   EzBC2(:,p)=Ez(ys,m2,p); EzBC4(:,p)=Ez(ys,m1,p); 
else, 
   EzBC2(:,p)=spline(ye,Ez(ye,m2,p),ys');  
   EzBC4(:,p)=spline(ye,Ez(ye,m1,p),ys'); 
end 
end 
 
while 1 
disp('Movie Modes: ')  
disp('1 --> 2-D log-scale color plan view') 
disp('2 --> 2-D linear scale color plan view') 
disp('3 --> 3-D linear scale copper tint')  
vsel=input('Select Choice: '); 
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if ~isempty(vsel), if vsel==1 | vsel==2 | vsel==3, break; end; end 
end 
 
EzMax=max(Ezmx);  
 
if vsel==1, 
% Using bi-polar log scaling to retain Ez polarity with selected dynamic range 
DR=input('Enter 2-D Plot Dynamic Range, e.g. 100, 1000,... : '); 
SFac=EzMax/DR; Cmax=log10(DR); C=[-Cmax Cmax]; Zc=2*Cmax;  
XBC=[m1 m2 m2 m1 m1]'; YBC=[n1 n1 n2 n2 n1]'; ZBC=Zc*[1 1 1 1 1]'; 
 % sub-grid outline 
XBS=[xe; xe; m1*ones(Np,1); m2*ones(Np,1)];  
 % sub-grid sensor x and y node numbers 
YBS=[n1*ones(Mp,1); n2*ones(Mp,1); ye; ye]; 
ZBS=Zc*ones(2*(Mp+Np),1); 
end 
 
if vsel==2, 
% Using Linear Ez plot 
C=[-EzMax EzMax]; Zc=2*EzMax;  
XBC=[m1 m2 m2 m1 m1]'; YBC=[n1 n1 n2 n2 n1]'; ZBC=Zc*[1 1 1 1 1]';  
% sub-grid outline 
XBS=[xe; xe; m1*ones(Np,1); m2*ones(Np,1)]; 
  % sub-grid sensor x and y node numbers 
YBS=[n1*ones(Mp,1); n2*ones(Mp,1); ye; ye]; 
ZBS=Zc*ones(2*(Mp+Np),1); 
end 
 
if vsel==3, v(5)=-EzMax; v(6)=EzMax; end 
 
% Initializing Frames 
clf reset; v(1)=1; v(2)=M; v(3)=1; v(4)=N;   
 
if vsel==1,  
   EzScl=Ez(:,:,1)/SFac;                 % scaling so abs(EzScl) <= DR 
   [p1 q1]=find(0 <= EzScl & EzScl < 1); % nonlinear remapping for |EzScl| < 1   
   EzScl(p1+(q1-1)*N)= 1;                % to zero log plot 
   [p1 q1]=find(-1 < EzScl & EzScl < 0); 
   EzScl(p1+(q1-1)*N)= -1; 
   EzLog=sign(Ez(:,:,1)).*log10(abs(EzScl)); 
    
   surf(X,Y,EzLog); shading interp 
    
   title(['Initial Condition \pm Log_{10}\{|E_z(x,y,t=0)|\}; Forward Time Steps: '... 
         ,int2str(P)],'FontSize',14) 
   xlabel('x-axis','FontSize',18); ylabel('y-axis','FontSize',18) 
   axis equal; axis(v); caxis(C); colorbar  
   view(0,90); hold on 
   plot3(XBC,YBC,ZBC,'--k'); 
   if Me ~= 1 | Ne ~= 1, plot3(XBS,YBS,ZBS,'or'); end  
   hold off 
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end 
 
if vsel==2,  
   surf(X,Y,Ez(:,:,1)); shading interp 
   title(['Initial Condition E_z(x,y,t=0); Forward Time Steps: '... 
         ,int2str(P)],'FontSize',14) 
   xlabel('x-axis','FontSize',18); ylabel('y-axis','FontSize',18) 
   axis equal; axis(v); caxis(C); colorbar  
   view(0,90); hold on 
   plot3(XBC,YBC,ZBC,'--k');  
   if Me ~= 1 | Ne ~= 1, plot3(XBS,YBS,ZBS,'or'); end  
   hold off 
end 
 
if vsel==3, surfl(Y,X,Ez(:,:,1)); 
   title(['Initial Condition E_z(x,y,t=0); Forward Time Steps: ',int2str(P)],... 
      'FontSize',14) 
   xlabel('x-axis','FontSize',18); ylabel('y-axis','FontSize',18)  
   axis(v); colormap(copper);  
end 
 
Frame=moviein(P,gcf); 
 
hcpy=input('Print a Hard Copy ? (Y/N): ','s'); 
if ~isempty(hcpy), if hcpy == 'Y' | hcpy == 'y', print; end; end 
name=input('Enter "Name" to Save as Name.jpg File ? (Hit Enter Key to Skip): ','s'); 
if ~isempty(name), eval(['print ',name,' -djpeg99']); end 
 
for p=1:P;    % Recording animation frames 
   if vsel==1,  
   EzScl=Ez(:,:,p)/SFac;                 % scaling so abs(EzScl) <= DR 
   [p1 q1]=find(0 <= EzScl & EzScl < 1); % nonlinear remapping for |EzScl| < 1   
   EzScl(p1+(q1-1)*N)= 1;                % to zero log plot 
   [p1 q1]=find(-1 < EzScl & EzScl < 0); 
   EzScl(p1+(q1-1)*N)= -1; 
   EzLog=sign(Ez(:,:,p)).*log10(abs(EzScl)); 
   surf(X,Y,EzLog); shading interp 
   title(['\pm Log_{10}\{|E_z(x,y,t=',int2str(p),')|\}; Forward Time Steps: ',... 
         int2str(P)],'FontSize',14) 
   xlabel('x-axis','FontSize',18); ylabel('y-axis','FontSize',18) 
   axis equal; axis(v); caxis(C); colorbar  
   view(0,90); hold on 
   plot3(XBC,YBC,ZBC,'--k');  
   if Me ~= 1 | Ne ~= 1, plot3(XBS,YBS,ZBS,'or'); end  
   hold off 
      if ~isempty(name1),  
         if p == pj1(nj), name=[name1 '_' int2str(nj)];              
            eval(['print ',name,' -djpeg99']); nj=min(nj+1,njmx); 
      end; end 
end 
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   if vsel==2,  
   surf(X,Y,Ez(:,:,p)); shading interp 
   title(['E_z(x,y,t=',int2str(p),'); Forward Time Steps: ',... 
         int2str(P)],'FontSize',14) 
   xlabel('x-axis','FontSize',18); ylabel('y-axis','FontSize',18) 
   axis equal; axis(v); caxis(C); colorbar  
   view(0,90); hold on 
   plot3(XBC,YBC,ZBC,'--k');  
   if Me ~= 1 | Ne ~= 1, plot3(XBS,YBS,ZBS,'or'); end  
   hold off 
      if ~isempty(name1),  
         if p == pj2(nj), name=[name1 '_' int2str(nj)];              
            eval(['print ',name,' -djpeg99']); nj=min(nj+1,njmx); 
      end; end 
   end 
 
   if vsel==3, surfl(X,Y,Ez(:,:,p)) 
   title(['E_z(x,y,t=',int2str(p),'); Forward Time Steps: ',int2str(P)],'FontSize',14) 
   xlabel('x-axis','FontSize',18); ylabel('y-axis','FontSize',18)  
   axis(v); colormap(copper);  
      if ~isempty(name1),  
         if p == pj1(nj), name=[name1 int2str(nj)];              
            eval(['print ',name,' -djpeg99']); nj=min(nj+1,njmx); 
      end; end 
   end 
 
Frame(p)=getframe(gcf); 
end 
 
if vsel==1, title(['Final Time Step \pm Log_{10}\{|E_z(x,y,t=',... 
         int2str(P),')|\}'],'FontSize',14) 
else 
   title(['Final Time Step E_z(x,y,t=',int2str(P),')'],'FontSize',14) 
end 
 
hcpy=input('Print a Hard Copy ? (Y/N): ','s'); 
if ~isempty(hcpy), if hcpy == 'Y' | hcpy == 'y', print; end; end 
name=input('Enter "Name" to Save as Name.jpg File ? (Hit Enter Key to Skip): ','s'); 
if ~isempty(name), eval(['print ',name,' -djpeg99']); end 
 
FrameFile=input('Enter File Name to Save Movie Frame Array as *.mat 
 (Press Enter to Skip): ','s'); 
if ~isempty(FrameFile), eval(['save ',FrameFile,' M N Frame']); end 
 
clear Frame 
 
% Computation Using Reverse-Time BC's Stored From Sub-Grid Boundary 
 
% Constructing Sub-Grid Evolution Arrays 
ds=ones(1,max(Ms,Ns));  
As=diag(ds(1:Ns-1),1)+diag(ds(1:Ns-1),-1); 
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Bs=diag(ds(1:Ms-1),1)+diag(ds(1:Ms-1),-1); 
 
Ps=input('Enter time-step to begin time-reversed BC data: '); 
 
name2=input('Enter Reverse Soln "Name" for Name_nn.jpg ? (Enter Key to Skip): ','s'); 
if ~isempty(name2),  
   dp2=input('Enter Time Step Increment Between Stored Frames: '); 
   pj2=1:dp2:Ps; 
   nj=1; njmx=length(pj2); 
end 
 
disp('Select Reverse-Time Data to Use: ') 
disp('  1 ==> Full Grid IC and Full Stored BCs (Exact Reverse-Time Solution)') 
disp('  2 ==> No ICs and Stored BC Subset (Realistic Measured Boundary Data)') 
Rdat=input('Make Selection: '); 
 
Ezs=zeros(Ns,Ms,Ps); % Reserving 3D array spaces 
if Rdat == 1, 
% Set IC's at p=Ps and p=Ps-1 
Ezs(:,:,1)=Ez(ys,xs,Ps); Ezs(:,:,2)=Ez(ys,xs,Ps-1);  
end 
 
if Rdat == 2, 
% Explicitely Enforce Ez=0 BC's on Grid Boundary For Update 
Ezs(1,:,1)=EzBC1(:,Ps); Ezs(:,Ms,1)=EzBC2(:,Ps).'; 
Ezs(Ns,:,1)=EzBC3(:,Ps); Ezs(:,1,1)=EzBC4(:,Ps).'; 
Ezs(1,:,2)=EzBC1(:,Ps-1); Ezs(:,Ms,2)=EzBC2(:,Ps-1).'; 
Ezs(Ns,:,2)=EzBC3(:,Ps-1); Ezs(:,1,2)=EzBC4(:,Ps-1).'; 
end 
 
for p=3:Ps;           % Equation of Evolution 
Ezs(:,:,p)=Q1*(As*Ezs(:,:,p-1)+Ezs(:,:,p-1)*Bs)+Q2*Ezs(:,:,p-1)-Ezs(:,:,p-2); 
% Explicitely Enforce Ez=0 BC's on Grid Boundary For Update 
Ezs(1,:,p)=EzBC1(:,Ps-p+1); Ezs(:,Ms,p)=EzBC2(:,Ps-p+1).'; 
Ezs(Ns,:,p)=EzBC3(:,Ps-p+1); Ezs(:,1,p)=EzBC4(:,Ps-p+1).'; 
end 
 
clf reset; 
 
if vsel==1,  
   EzScl=Ezs(:,:,1)/SFac;                % scaling so abs(EzScl) <= DR 
   [p1 q1]=find(0 <= EzScl & EzScl < 1); % nonlinear remapping for |EzScl| < 1   
   EzScl(p1+(q1-1)*Ns)= 1;               % to zero log plot 
   [p1 q1]=find(-1 < EzScl & EzScl < 0); 
   EzScl(p1+(q1-1)*Ns)= -1; 
   EzLog=sign(Ezs(:,:,1)).*log10(abs(EzScl)); 
   surf(Xs,Ys,EzLog); shading interp 
   title(['\pm Log_{10}\{|E_z(x,y,t=',int2str(Ps),... 
         ')|\} Initial Condition for Time-Reversal'],'FontSize',14) 
   xlabel('x-axis','FontSize',18); ylabel('y-axis','FontSize',18) 
   axis equal; axis(v); caxis(C); colorbar; view(0,90); hold on 
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   if Me ~= 1 | Ne ~= 1, plot3(XBS,YBS,ZBS,'or'); end  
   hold off 
end 
 
if vsel==2,  
   surf(Xs,Ys,Ezs(:,:,1)); shading interp 
   title(['E_z(x,y,t=',int2str(Ps),... 
         ') Initial Condition for Time-Reversal'],'FontSize',14) 
   xlabel('x-axis','FontSize',18); ylabel('y-axis','FontSize',18) 
   axis equal; axis(v); caxis(C); colorbar; view(0,90); hold on 
   if Me ~= 1 | Ne ~= 1, plot3(XBS,YBS,ZBS,'or'); end  
   hold off 
end 
 
if vsel==3, surfl(Ys,Xs,Ezs(:,:,1)); 
   title(['E_z(x,y,t=',int2str(Ps),') Initial Condition for Time-Reversal'],'FontSize',14) 
   xlabel('x-axis','FontSize',18); ylabel('y-axis','FontSize',18)  
   axis(v); colormap(copper);  
end 
 
Frame=moviein(Ps,gcf); 
 
hcpy=input('Print a Hard Copy ? (Y/N): ','s'); 
if ~isempty(hcpy), if hcpy == 'Y' | hcpy == 'y', print; end; end 
name=input('Enter "Name" to Save as Name.jpg File ? (Hit Enter Key to Skip): ','s'); 
if ~isempty(name), eval(['print ',name,' -djpeg99']); end 
 
for p=1:Ps;    % Recording animation frames 
   if vsel==1,  
   EzScl=Ezs(:,:,p)/SFac;                % scaling so abs(EzScl) <= DR 
   [p1 q1]=find(0 <= EzScl & EzScl < 1); % nonlinear remapping for |EzScl| < 1   
   EzScl(p1+(q1-1)*Ns)= 1;               % to zero log plot 
   [p1 q1]=find(-1 < EzScl & EzScl < 0); 
   EzScl(p1+(q1-1)*Ns)= -1; 
   EzLog=sign(Ezs(:,:,p)).*log10(abs(EzScl)); 
   surf(Xs,Ys,EzLog); shading interp 
   title(['\pm Log_{10}\{|E_z(x,y,t=',int2str(Ps-p+1),')|\}; Reverse Time Steps: ',... 
         int2str(Ps)],'FontSize',14) 
   xlabel('x-axis','FontSize',18); ylabel('y-axis','FontSize',18) 
   axis equal; axis(v); caxis(C); colorbar; view(0,90); hold on 
   if Me ~= 1 | Ne ~= 1, plot3(XBS,YBS,ZBS,'or'); end  
   hold off 
      if ~isempty(name2),  
         if p == pj2(nj), name=[name2 '_' int2str(nj)];              
            eval(['print ',name,' -djpeg99']); nj=min(nj+1,njmx); 
      end; end 
   end 
    
   if vsel==2,  
   surf(Xs,Ys,Ezs(:,:,p)); shading interp 
   title(['E_z(x,y,t=',int2str(Ps-p+1),'); Reverse Time Steps: ',... 
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         int2str(Ps)],'FontSize',14) 
   xlabel('x-axis','FontSize',18); ylabel('y-axis','FontSize',18) 
   axis equal; axis(v); caxis(C); colorbar; view(0,90); hold on 
   if Me ~= 1 | Ne ~= 1, plot3(XBS,YBS,ZBS,'or'); end  
   hold off 
      if ~isempty(name2),  
         if p == pj2(nj), name=[name2 '_' int2str(nj)];              
            eval(['print ',name,' -djpeg99']); nj=min(nj+1,njmx); 
      end; end 
   end 
 
   if vsel==3, surfl(Xs,Ys,Ezs(:,:,p)) 
   title(['E_z(x,y,t=',int2str(Ps-p+1),'); Reverse Time Steps: ',int2str(Ps)],'FontSize',14) 
   xlabel('x-axis','FontSize',18); ylabel('y-axis','FontSize',18)  
   v(5)=-EzMax; v(6)=EzMax; axis(v); colormap(copper);  
      if ~isempty(name2),  
         if p == pj1(nj), name=[name2 int2str(nj)];              
            eval(['print ',name,' -djpeg99']); nj=min(nj+1,njmx); 
      end; end 
   end 
 
Frame(p)=getframe(gcf); 
end 
 
if vsel==1, title(['Final Reversed Time \pm Log_{10}\{|E_z(x,y,t=0)|\};  
Reverse Time Steps: ',... 
         int2str(Ps)],'FontSize',14) 
else, 
   title(['Final Reversed Time E_z(x,y,t=0); Reverse Time Steps: ',... 
         int2str(Ps)],'FontSize',14) 
end 
 
hcpy=input('Print a Hard Copy ? (Y/N): ','s'); 
if ~isempty(hcpy), if hcpy == 'Y' | hcpy == 'y', print; end; end 
name=input('Enter "Name" to Save as Name.jpg File ? (Hit Enter Key to Skip): ','s'); 
if ~isempty(name), eval(['print ',name,' -djpeg99']); end 
 
FrameFile=input('Enter File Name to Save Movie Frame Array as *.mat  
(Press Enter to Skip): ','s'); 
if ~isempty(FrameFile), eval(['save ',FrameFile,' M N Frame']); end 
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2. Programs FT_FDTD2D1 And RT_FDTD2D1m For The Second Example 

a. FT_FDTD2D1 For The Forward Time Step  

 
clear all 
opengl neverselect 
% Modified to use natural unrotated x(cols) y(rows) array definition 
Ns=input('Enter number of x-points on sensor sub-grid boundary: ');   
Ms=input('Enter number of y-points in sensor sub-grid boundary: '); 
N=2*Ns;M=2*Ms; 
Ez=zeros(M,N);  
x=1:N; y=1:M; Y=y'*ones(1,N); X=ones(M,1)*x;  
 
P=input('Enter number of time-steps: '); 
name1=input('Enter Forward "Name" for  Name_nn.jpg ?  
(Enter Key to Skip): ','s'); 
if ~isempty(name1),  
   dp1=input('Enter Time Step Increment Between Stored Frames: '); 
   pj1=1:dp1:P; 
   nj=1; njmx=length(pj1); 
end 
 
q=2; % q=dh/(c*dt)=2 for half-step algorithm 
Q1=1/(q*q); Q2=(2-4*Q1); cdt=1/q; 
 
  
n1=fix((N-Ns)/2)+1; n2=n1+Ns-1; 
m1=fix((M-Ms)/2)+1; m2=m1+Ms-1; 
xs=n1:n2; ys=m1:m2;        % Sensor grid numbers  
Nb=2*(m2-m1+n2-n1);        % Number of inner boundary nodes = 2*(Ns+Ms-2) 
 
% Defining ordered pairs and absolute addresses of sub-grid boundary nodes  
in (M,N) array 
mys=zeros(Nb,1); nxs=mys;   
mys(1:Ns)=m1; mys(Ns+1:Ns+Ms-1)=m1+1:m2;  
mys(Ns+Ms:2*Ns+Ms-2)=m2; mys(2*Ns+Ms-1:Nb)=m2-1:-1:m1+1; 
nxs(1:Ns)=n1:n2; nxs(Ns+1:Ns+Ms-1)=n2;  
nxs(Ns+Ms:2*Ns+Ms-2)=n2-1:-1:n1; nxs(2*Ns+Ms-1:Nb)=n1; 
% Absolute array addresses allows no-loop loading 
mns=(nxs-1)*M + mys;        
% Storage for saving scattered field boundary data 
Ezb=zeros(Nb,P);            
 
% User Supplied Function Defines Metallic Target Nodes Where Ez=0 
[my nx]=Air2(M,N); 
Ntgt=length(nx); 
xtgt=x(nx); ytgt=y(my); ztgt=ones(Ntgt,1); 
mntgt=(nx-1)*M + my;       % Absolute array addresses allows no-loop loading 
 
% Displaying Target Nodes and Subgrid 
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v=[1 N 1 M -1.1 1.1]; cv=[-1.1 1.1];  
% sub-grid outline 
YBC=[m1 m2 m2 m1 m1]'; XBC=[n1 n1 n2 n2 n1]'; ZBC=[1 1 1 1 1]';  
clf reset; surf(X,Y,Ez); shading interp  
axis(v); axis equal; caxis(cv); hold on 
plot3(xtgt,ytgt,ztgt,'.k'); hold on 
plot3(XBC,YBC,ZBC,'--k');  
view(0,90); figure(1) 
xlabel('x-axis','FontSize',14); ylabel('y-axis','FontSize',14) 
title('Target Nodes and Sub-grid - Press a Key to Continue ...','FontSize',14); 
hold off 
 
pause 
 
% Constructing Evolution Arrays 
d=ones(1,max(N,M));  
A=sparse(Q1*(diag(d(1:M-1),1)+diag(d(1:M-1),-1)));   
B=sparse(Q1*(diag(d(1:N-1),1)+diag(d(1:N-1),-1))); 
 
% IC's for -x Propagating Gaussian Impulse Plane-Wave (8 Mar 2001) 
disp('Unit Peak Gaussian Impulse Plane Wave Propagates in -x Direction'); 
x0=input('Enter IC Peak Location x0 in Grid Units for the Gaussian Plane Wave: '); 
sig=input('Enter Standard Deviation of the Gaussian Plane Wave in Grid Units: '); 
E0=1; xc=(x-x0); sig2=2*sig*sig; ct=0:cdt:(P-1)*cdt; xcp=x0-ct; % inc wave center 
 
% Setting IC's at t=-2 and -1 time steps 
Ez1=Ez; Ez2=Ez; 
 
% p=-2 
Ezex=E0*ones(M,1)*exp(-((xc-2*cdt).^2)/sig2);  
Ez1(mntgt)=-Ezex(mntgt);  
 
% p=-1 
Ezex=E0*ones(M,1)*exp(-((xc-cdt).^2)/sig2);  
Ez2(mntgt)=-Ezex(mntgt);  
 
% Using bi-polar log scaling to retain Ez polarity with selected dynamic range 
DR=input('Enter 2-D Plot Dynamic Range, e.g. 100, 1000, etc : '); 
SFac=2*E0/DR;           % Assuming max|Ez|=2*E0 
Cmax=log10(DR); cv=[-Cmax Cmax];  
v=[1 N 1 M -Cmax Cmax]; ZBC=Cmax*[1 1 1 1 1]'; 
 
% Computing Scattered Field and Displaying Total Field 
 
pshow=(5:5:P);  % every 5 time-step indices to display progress 
 
for p=1:P;   % Time-Stepping  
  
% Compute Exact Plane Wave 
Ezex=E0*ones(M,1)*exp(-((xc+ct(p)).^2)/sig2);   
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% Equation of Evolution 
Ez = A*Ez2 + Ez2*B + Q2*(Ez2-Ez1); 
 
% Enforce PEC BC's on Target Nodes 
Ez(mntgt)=-Ezex(mntgt);  
 
% Enforce PEC BC's on Grid Boundary 
Ez(:,1)=0;  % x=1 BC 
Ez(1,:)=0;  % y=1 BC 
Ez(:,N)=0;  % x=M BC 
Ez(M,:)=0;  % y=N BC 
% Time-shift arrays 
Ez1=Ez2; Ez2=Ez; 
 
% Saving scattered field at boundary 
Ezb(:,p)=Ez(mns);  
 
% Displaying +/- Log10(Total Field) 
EzScl=(Ez+Ezex)/SFac;                    % scaling so abs(EzScl) <= DR 
[p1 q1]=find(0 <= EzScl & EzScl < 1);    % nonlinear remapping for |EzScl| < 1   
EzScl(p1+(q1-1)*M)= 1;                   % to zero log plot 
[p1 q1]=find(-1 < EzScl & EzScl < 0); 
EzScl(p1+(q1-1)*M)= -1; 
EzLog=sign(Ez+Ezex).*log10(abs(EzScl)); 
surf(X,Y,EzLog); shading interp  
axis(v); axis equal; caxis(cv); colorbar; hold on 
% Highlight Target Locations and Sub-Grid Boundary 
plot3(xtgt,ytgt,ztgt,'.k'); hold on 
plot3(XBC,YBC,ZBC,'--k');  
view(0,90);  
xlabel('x-axis','FontSize',14); ylabel('y-axis','FontSize',14) 
title(['\pm Log_{10}\{|E_z^{tot}(x,y,t=',int2str(p),')|\}'],'FontSize',14); 
hold off 
figure(1) 
if ~isempty(name1),  
         if p == pj1(nj), name=[name1 '_' int2str(p)];              
            eval(['print ',name,' -djpeg99']); nj=min(nj+1,njmx); 
      end; end 
pause(.01) 
end 
name=input('Enter "Name" to Save as Name.jpg File ? (Hit Enter Key to Skip): ','s'); 
if ~isempty(name), eval(['print ',name,' -djpeg99']); end 
 
name2=input('Enter "Name" for Name.Mat to Save [N M P Ns Ms x0 sig nx my Ezb]  
(Enter Key to Skip): ','s'); 
if ~isempty(name2), eval(['save ',name2,' N M P Ns Ms x0 sig nx my Ezb']); end 
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b. RT_FDTD2D1m For The Reversed Time Step 
 
clear all 
 
dir *.mat 
name=input('Enter "Name" for Name.Mat to Retrieve Boundary and Target Data: ','s'); 
eval(['load ',name,' N M P Ns Ms x0 sig nx my Ezb']);  
 
% N=number of x-points in full grid 
% M=number of y-points in full grid 
% P=number of time-steps 
% Ns=number of x-points on sensor sub-grid boundary   
% Ms=number of y-points in sensor sub-grid boundary 
% x0=Gaussian Plane Wave Initial Peak Location in Grid Units  
% sig=Gaussian Plane Wave Standard Deviation in Grid Units 
% nx(1,Ntgt)=x-target nodes in (M,N) full grid 
% my(1,Ntgt)=y-target nodes 
% Ezb(Nb,P)=scattered field at subgrid boundary  
 
n1=fix((N-Ns)/2)+1; n2=n1+Ns-1; 
m1=fix((M-Ms)/2)+1; m2=m1+Ms-1; 
 
xs=n1:n2; ys=m1:m2;        % Inner grid coordinates in (M,N) grid 
Ys=ys'*ones(1,Ns); Xs=ones(Ms,1)*xs; 
 
Nb=2*(m2-m1+n2-n1);        % Number of inner boundary nodes = 2*(Ns+Ms-2) 
 
% Computing Boundary Node Indices in Inner Sub-Grid System 
myb=zeros(Nb,1); nxb=myb;   
myb(1:Ns)=1; myb(Ns+1:Ns+Ms-1)=2:Ms;  
myb(Ns+Ms:2*Ns+Ms-2)=Ms; myb(2*Ns+Ms-1:Nb)=Ms-1:-1:2; 
nxb(1:Ns)=1:Ns; nxb(Ns+1:Ns+Ms-1)=Ns;  
nxb(Ns+Ms:2*Ns+Ms-2)=Ns-1:-1:1; nxb(2*Ns+Ms-1:Nb)=1; 
mnb=(nxb-1)*Ms + myb;      % Absolute array addresses allows no-loop loading 
 
% Metallic Target Nodes Where Ez=-Ez înc 
Ntgt=length(nx); ztgt=ones(Ntgt,1); nn=(1:Ntgt)'; nn1=(1:Ntgt)'; 
nx1=nx;my1=my; 
disp('Exact Target Nodes (node#, nx, my) in Full Grid:') 
disp([nn nx my]); 
yn=input('Change Assumed Target Nodes ? (Y/N): ','s'); 
if yn == 'Y' | yn == 'y',  
    while 1, 
        n=input('Enter Node# to Change (0 to End): '); 
        if n < 1 | n > Ntgt, break; end 
        nxmy=input('Enter New [nx my] as Vector: '); 
        nx1(n)=nxmy(1); my1(n)=nxmy(2); 
        disp('Revised Target Nodes (node#, nx, my) in Full Grid:') 
        disp([nn1 nx1 my1]); 
    end 
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end 
% Assumed Target Node Numbers in Inner Grid Coordinates 
mys=my-m1+1; nxs=nx-n1+1; 
 
% Absolute Array Addresses for Assumed Target Nodes  
mnstgt=(nxs-1)*Ms + mys;  
  
 % Assumed Target Node Numbers in Inner Grid Coordinates 
mys1=my1-m1+1; nxs1=nx1-n1+1;  
 
% Absolute Array Addresses for Assumed Target Nodes 
 mnstgt1=(nxs1-1)*Ms + mys1;    
 
q=2; % Assuming q=dh/(c*dt)=2 for half-step algorithm 
Q1=1/(q*q); Q2=(2-4*Q1); cdt=1/q; ct=cdt*(0:(P-1));  
 
E0=1; xcp=x0-ct; sig2=2*sig*sig;        % Incident field peak location 
 
 
% Constructing Sub-Grid Evolution Arrays 
ds=ones(1,max(Ns,Ms));  
As=Q1*(diag(ds(1:Ms-1),1)+diag(ds(1:Ms-1),-1));   
Bs=Q1*(diag(ds(1:Ns-1),1)+diag(ds(1:Ns-1),-1)); 
 
Ps=input(['Enter time-step <= ',int2str(P),' to initiate time-reversed FDTD solution: ']); 
 
% Using bi-polar log scaling to retain Ez polarity with selected dynamic range 
DR=input('Enter 2-D Plot Dynamic Range, e.g. 100, 1000, etc : '); 
SFac=2*E0/DR;           % Assuming max|Ez|=2*E0 
Cmax=log10(DR); cv=[-Cmax Cmax];  
v=[1 N 1 M -Cmax Cmax]; yi=[1 N]'; zi=[Cmax Cmax]'; 
name1=input('Enter "Name" for  Name_nn.jpg ? (Enter Key to Skip): ','s'); 
if ~isempty(name1),  
   dp1=input('Enter Time Step Increment Between Stored Frames: '); 
   pj1=Ps:-dp1:1; 
   nj=1; njmx=length(pj1); 
end 
 
% Reserving space for evolution field arrays 
Ez=zeros(Ms,Ns); Ez1=Ez; Ez2=Ez;  
 
Energy=zeros(Ps,1);  % Accumulated Energy 
% Reverse Time Evolution 
for p=Ps:-1:1;   
xi=[xcp(p) xcp(p)]'; % For Incident Field Dashed Line  
% Initializing BC's  
   if p==Ps % p=Ps 
      Ezi=E0*ones(Ms,1)*exp(-((xs-xcp(Ps)).^2)/sig2);   % Incident field  
      if yn == 'Y' | yn == 'y',  
         Ez1(mnstgt1)=-Ezi(mnstgt1);  % Target data 
     else 
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         Ez1(mnstgt)=-Ezi(mnstgt);  % Target data  
     end   
      Energy(1)=sum(sum(Ez1.*Ez1)); 
   elseif p==Ps-1% p=Ps-1 
      Ez2(mnb)=Ezb(:,Ps-1);      % Boundary data 
      Ezi=E0*ones(Ms,1)*exp(-((xs-xcp(Ps-1)).^2)/sig2); % Incident field 
      if yn == 'Y' | yn == 'y',  
         Ez2(mnstgt1)=-Ezi(mnstgt1);  % Target data 
     else 
      Ez2(mnstgt)=-Ezi(mnstgt); % Target data 
     end 
      Energy(2)=Energy(1)+sum(sum(Ez2.*Ez2)); 
 clf reset 
   else    
      Ezi=E0*ones(Ms,1)*exp(-((xs-xcp(p)).^2)/sig2);   % Incident Field 
 
      Ez = As*Ez2 + Ez2*Bs + Q2*(Ez2-Ez1);             % FDTD Evolution 
      if yn== 'Y' | yn== 'y', 
         Ez(mnstgt1)=-Ezi(mnstgt1);                       % Target Node PEC BC's 
      else 
         Ez(mnstgt)=-Ezi(mnstgt); 
      end 
          Ez(mnb)=Ezb(:,p);                                % Boundary Data Update 
 
      Ez1=Ez2; Ez2=Ez;                                 % Time-shift arrays 
 
      Energy(Ps-p+1)=Energy(Ps-p)+sum(sum(Ez.*Ez)); 
   end 
% Displaying +/- Log10(Total Field) 
EzScl=Ez/SFac;   % Scattered Field (scaling so abs(EzScl) <= DR) 
% EzScl=(Ez+Ezi)/SFac;   % Total Field 
[p1 q1]=find(0 <= EzScl & EzScl < 1);    % nonlinear remapping for |EzScl| < 1   
EzScl(p1+(q1-1)*Ms)= 1;                  % to zero log plot 
[p1 q1]=find(-1 < EzScl & EzScl < 0); 
EzScl(p1+(q1-1)*Ms)= -1; 
EzLog=sign(Ez).*log10(abs(EzScl));      % Scattered Field 
% EzLog=sign(Ez+Ezi).*log10(abs(EzScl));  % Total Field 
surf(Xs,Ys,EzLog); shading interp  
axis equal; axis(v); caxis(cv); colorbar; view(0,90); hold on 
% Highlight Target Locations and Sub-Grid Boundary 
if yn == 'Y' | yn== 'y'; 
   plot3(nx1,my1,ztgt,'.r'); hold on 
end 
plot3(nx,my,ztgt,'.k'); hold on 
plot3(xi,yi,zi,'--r'); 
% plot3(XBC,YBC,ZBC,'--k');  
xlabel('x-axis','FontSize',14); ylabel('y-axis','FontSize',14) 
title(['\pm Log_{10}\{|E_z^{scat}(x,y,t=',int2str(p),')|\}'],'FontSize',14); 
 
hold off 
if ~isempty(name1),  
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         if p == pj1(nj), name=[name1 '_' int2str(nj)];              
            eval(['print ',name,' -djpeg99']); nj=min(nj+1,njmx); 
      end; end 
 
  %figure(1) 
pause(.01) 
end 
 
name=input('Enter "Name" to Save as Name.jpg File ? (Hit Enter Key to Skip): ','s'); 
if ~isempty(name), eval(['print ',name,' -djpeg99']); end 
 
tp=(1:Ps)'; 
figure(2); plot(tp,Energy) 
xlabel('Reversed Time Steps','FontSize',14) 
ylabel('Energy','FontSize',14) 
title(['Final Sub-Grid Energy = ',num2str(Energy(Ps))],'FontSize',14) 
 
 
3. Target Functions 

a. Air2: Two Aircraft-like Targets 
function [ny, mx]=Air2(N,M) 
% [ny mx] are column arrays of target nodes for 2 aircraft from RTWE_2D5.m   
 
% Define Basic Aircraft Shaped Grid Locations Centered at y=x=0 
Tgt=zeros(29,2);   % Basic Target Node Indices (Y,X) ordered 
Tgt(1:11,2)=(-5:5)'; 
Tgt(12,2)=-5; Tgt(12,1)=2; 
Tgt(13,2)=-4; Tgt(13,1)=1; 
Tgt(14,2)=-1; Tgt(14,1)=4; 
Tgt(15,2)=-1; Tgt(15,1)=3; 
Tgt(16,2)= 0; Tgt(16,1)=3; 
Tgt(17,2)= 0; Tgt(17,1)=2; 
Tgt(18,2)= 1; Tgt(18,1)=2; 
Tgt(19,2)= 1; Tgt(19,1)=1; 
Tgt(20,2)= 2; Tgt(20,1)=1; 
Tgt(21:29,2)=Tgt(12:20,2);  
Tgt(21:29,1)=-Tgt(12:20,1);  
 
mc=fix((M-1)/2)+1; nc=fix((N-1)/2)+1;  % Approx Grid Center 
 
% Defining Nodes for Two Offset Targets  
ny=zeros(58,1); mx=ny; 
ny(1:29)=Tgt(:,1) + nc + 7;   % y offset for tgt #1 
mx(1:29)=Tgt(:,2) + mc + 2;   % x offset for tgt #1 
ny(30:58)=Tgt(:,1) + nc - 7;  % y offset for tgt #2 
mx(30:58)=Tgt(:,2) + mc - 2;  % x offset for tgt #2 
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b. Pt2: Two Point-Like Targets 
function [my, nx]=Pt2(M,N) 
% [my nx] are column arrays of simple 2-point target nodes   
% 27 June 01 Mod from Point2.m reversing M and N roles with x and y 
 
Tgt=zeros(2,2);   % Basic Target Node Indices (Y,X) ordered 
Tgt(1:2,2)=[-5 5]'; 
 
mc=fix((M-1)/2)+1; nc=fix((N-1)/2)+1;  % Approx Grid Center 
 
% Defining Nodes  
my=zeros(2,1); nx=my; 
my(1:2)=Tgt(:,1) + mc; 
nx(1:2)=Tgt(:,2) + nc; 
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